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ΛCDM: the standard model of 
cosmology 

Why is this the standard model? 

New tests and possible problems 

• cold dark matter 

• cosmological constant 



Dark matter 
particles 

Cosmic inflation  
 initial conditions 

Two revolutionary ideas were 
proposed in 1980  
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Non-baryonic dark matter 
candidates  

hot neutrino a few eV 

warm       sterile ν          
majoron; KeVin 

keV-MeV 

cold 
   axion 
neutralino 

10-5eV-
>100 GeV 

     Type              example                mass 



University of Durham 

Institute for Computational Cosmology 

The dark matter power spectrum 

Log k [h Mpc-1] 

The linear power spectrum (“power per octave” ) 
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The dark matter power spectrum 

Free streaming  

      λcut  α mx
-1              

for thermal relic 

  mCDM ~ 100GeV 
susy; Mcut ~ 10-6 Mo  

 mWDM ~ few keV  
sterile ν; Mcut~109 Mo 

  mHDM ~ few eV     
light ν; Mcut~1015 Mo  

The linear power spectrum (“power per octave” ) 
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t=10-35 seconds  

The formation of cosmic structure 

Supercomputer simulations are the 
best technique for calculating how 
small primordial perturbations grow 

into galaxies today 

Simulations 

“Cosmology machine” 

t=380,000 yrs  
δρ/ρ ∼10-5	


t=13.8 billion yrs  
δρ/ρ ∼1-106	
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The universe in a computer 

December 1981 

Speed = 500,000 FLOPS 
RAM   = 4 Mbytes 



University of Durham 

Institute for Computational Cosmology 

Non-baryonic dark matter 
cosmologies 

Davis, Efstathiou, 
Frenk & White ‘85 

HDM 
Ω=1 CfA redshift 

survey 

ΛCDM 
Ω=0.2 

Neutrinos 
Ω=1 

Davis, Efstathiou, 
Frenk & White ‘85 

Frenk, White 
& Davis ‘83 
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Non-baryonic dark matter 
cosmologies 

Davis, Efstathiou, 
Frenk & White ‘85 

HDM 
Ω=1 CfA redshift 

survey 

ΛCDM 
Ω=0.2 

Neutrinos 
Ω=1 

Davis, Efstathiou, 
Frenk & White ‘85 

Neutrino DM   
unrealistic clust’ing 

Neutrinos cannot 
make appreciable 
contribution to Ω 
 mν<< 10 ev 

Frenk, White 
& Davis ‘83 
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Non-baryonic dark matter 
cosmologies 

In CDM structure 
forms hierarchically 

Early CDM N-body 
simulations gave 
promising results 

Davis, Efstathiou, 
Frenk & White ‘85 

HDM 
Ω=1 CfA redshift 

survey 

ΛCDM 
Ω=0.2 

Neutrinos 
Ω=1 

Davis, Efstathiou, 
Frenk & White ‘85 

Neutrino DM   
unrealistic clust’ing 

Neutrinos cannot 
make appreciable 
contribution to Ω 
 mν<< 10 ev 

Frenk, White 
& Davis ‘83 



University of Durham 

Institute for Computational Cosmology Institute for Computational Cosmology Institute for Computational Cosmology 

Non-baryonic dark matter 
candidates  

hot neutrino a few eV 

warm 
      sterile ν          

majoron 
keV-MeV 

cold 
   axion 
neutralino 

10-5eV-
>100 GeV 

     Type              example          mass 
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ΛCDM model is an a priori 
implausible model! 

… but makes definite predictions and is therefore testable 
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The cold dark matter cosmogony 

Main successes of the CDM cosmogony: 

1.  CMB temp. anisotropies: predicted in 1981, discovered in 1993 

2.  Spatial distribution of gals (1990- QDOT, APM, 2dFGRS, SDSS) 

3.  General features of galaxy luminosity function  (1991 - ) 

4.  Evolution of the galaxy population (2000 - ) 



University of Durham 

Institute for Computational Cosmology 

Temperature anisotropies in CMB  

After Peebles & Yu ‘70;  Peebles ‘82  

Large scales Small scales 

coherent oscillations 
of γ – baryon fluid 
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WMAP temp anisotropies in CMB 

Hinshaw etal ‘06 

Amplitude of fluctuations 3-year data 

ΛCDM  

z~1000 

The data confirm  
the theoretical 
predictions     
(linear theory)  

Peebles ’82; Bond & 
Efstathiou ‘80s 
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The cold dark matter cosmogony 

Main successes of the CDM cosmogony: 

1.  CMB temp. anisotropies: predicted in 1981, discovered in 1993 

2.  Spatial distribution of gals (1990- QDOT, APM, 2dFGRS, SDSS) 

3.  General features of gal luminosity function  (1991 - ) 

4.  Evolution of the galaxy population (2000 - ) 
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Non-baryonic dark matter 
cosmologies 

Davis, Efstathiou, 
Frenk & White ‘85 

HDM 
Ω=1 

CfA redshift 
survey 

ΛCDM 
Ω=0.2 

In CDM 
structure forms 
hierarchically 

Early CDM        
N-body 

simulations gave 
promising results 

Neutrino dark 
matter produces  

unrealistic 
clustering 

Neutrinos 
Ω=1 

Davis, Efstathiou, 
Frenk & White ‘85 
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Davis, Efstathiou, 
Frenk & White ‘85 

Early simulations of ΛCDM  

simulated 

real 

simulated 
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The 2dF Galaxy 
Redshift Survey  
221,000  redshifts 

z~0 

2005 
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Abundance of gals & dark halos  

K-band 
2dFGRS 

Halo mass function 
ΛCDM 

Millennium run 

z=0 
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z = 0   Dark Matter 

Springel et al 05 
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The halo mass function 
and the galaxy 

luminosity function have 
different shapes 

Complicated variation of 
M/L with halo mass 

Dark halos 
(const M/L) 

galaxies 

The galaxy luminosity function 

SN feedback+photoionization 

AGN feedback 

White & Frenk ‘91; Kauffmann et al ‘93; Benson 
et al ’03; Croton et al ‘05; Bower et al. ’06  
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z=8 z=10 

Lacey, Baugh, 
Frenk, Benson ‘11 

unextincted 

w. dust 

z=3 
unextincted 

w. dust 

z=5 

Star forming galaxies  

Evolution of 
Lyman-break 
galaxy lum.  

function 
model  

data 
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The cold dark matter cosmogony 

Main successes of the CDM cosmogony: 

1.  CMB temp. anisotropies: predicted in 1981, discovered in 1993 

2.  Spatial distribution of gals (1990- QDOT, APM, 2dFGRS, SDSS) 

3.  General features of galaxy luminosity function  (1991 - ) 

4.  Evolution of the galaxy population (2000 - ) 
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z = 0   Dark Matter 

Springel et al 05 
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Croton et al 05 

z = 0   Galaxy light 
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Davis, Efstathiou, 
Frenk & White ‘85 

Early simulations of ΛCDM  

simulated 

real 

simulated 



Springel, Frenk & White  
Nature, April ‘06 

2dFGRS 

SDSS 

CfA 

real 

simulated 
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The final 2dFGRS power spectrum 

ΛCDM model  

ΛCDM convolved 
w. 2dFGR window 

2dFGRS P(k) 
well fit by ΛCDM 
model convolved 

with window 
function 

Cole, Percival, Peacock, 
Baugh, Frenk + 2dFGRS ‘05 

 Millennium sim 

 Linear theory 
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The final 2dFGRS power spectrum 

ΛCDM model  

ΛCDM convolved 
with window 

Baryon oscillations 
conclusively detected 

in 2dFGRS!!! 

Consistent with 
structure growth by 

gravitational 
instability in a ΛCDM 

universe 

P(k) / Pref(Ωbaryon=0)  

Also detected in 
SDSS LRG sample 
(Eisenstein et al 05) 

Cole, Percival, Peacock, 
Baugh, Frenk + 2dFGRS ‘05 

 Millennium sim 
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The cold dark matter cosmogony 

Main successes of the CDM cosmogony: 

1.  CMB temp. anisotropies: predicted in 1981, discovered in 1993 

2.  Spatial distribution of gals (1990- QDOT, APM, 2dFGRS, SDSS) 

3.  General features of gal luminosity function  (1991 - ) 

4.  Evolution of the galaxy population (2000 - ) 



University of Durham 

Institute for Computational Cosmology 

The cosmic power spectrum: from 
the CMB to the 2dFGRS 

2dFGRS 

z=0 

Sanchez et al 06 

⇒ ΛCDM provides an 
excellent description of 
mass power spectrum 

from 10-1000 Mpc 

WMAP 

ΛCDM 

wavenumber k (comoving h-1 Mpc)-1 
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The dark matter power spectrum 

Free streaming  

  λcut  α mx
-1              

for thermal relic 

  mCDM ~ 100GeV 
susy; Mcut ~ 10-6 Mo  

 mWDM ~ few keV  
sterile ν; Mcut~109 Mo 

  mHDM ~ few eV     
light ν; Mcut~1015 Mo  

The linear power spectrum (“power per octave” ) 
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Cosmology on small – strongly 
non-linear – scales  

 key to the identity of the dark matter  
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A cold dark matter universe 

•  The main halo and its subhalos have “cuspy” density profiles  

•  Large number of self-bound substructures (10% of mass) survive 

CDM N-body simulations make two important predictions 
on non-linear (halo) scales:  
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The Density Profile of Cold Dark 
Matter Halos 

Halo density profiles are 
independent of halo mass & 

cosmological parameters 

  There is no obvious density      
plateau or `core’ near the 

centre.  
(Navarro, Frenk & White ‘97) 

Dwarf galaxies 

Galaxy clusters 

Halos that form earlier have 
higher densities (bigger δ)   
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• Aquarius 

Springel et al ‘08 
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cold dark matter • warm dark matter  

Lovell, Eke, Frenk, Gao, Jenkins, Wang, White, Theuns, 
Boyarski & Ruchayskiy  ‘12 



University of Durham 

Institute for Computational Cosmology 

A warm dark matter universe 

•  Subhalos still “cuspy” but less concentrated than in CDM  

•  Far fewer self-bound substructures (3% of mass) survive 

For viable WDM particle masses, there is little difference 
between CDM and WDM on scales larger than galaxies.  

Can test for identity of the dark matter! 

On subgalactic scales:   
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The satellites of the Milky Way 

~25 satellites known 
in the MW 

• J. Bullock 
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Sculptor 

Leo I 

Sagittarius 
Sextans 

Dwarf galaxies around the Milky Way 

Carina 

Fornax 
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Dwarf sphs: cores or cusps? 

€ 

GM(r)
r

= −σ r
2 d lnρ*
d ln r

+
d lnσ r

2

d ln r
+ 2β

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Jeans eqn: 

from Aquarius sim vel. anisotropy 

The structure of dark matter halos 

radial velocity dispersion stellar density profile 
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•  Assume isotropic orbits 

•  Solve for σr (r) 

•  Compare with observed σr (r) 

•  Find “best fit” subhalo 

Dwarf sphs: cores or cusps? 

€ 

GM(r)
r

= −σ r
2 d lnρ*
d ln r

+
d lnσ r

2

d ln r
+ 2β

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Jeans eqn: 

from Aquarius sim vel. anisotropy 

Strigari, Frenk & White 2010 
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Leo I 

Sagittarius 
Sextans 

Dwarf galaxies around the Milky Way 

Carina 

Fornax 

Sculptor 
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Halo structure of dwarf satellites 
seems OK in both ΛCDM and WDM  

How can we distinguish between CDM & WDM ?  
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cold dark matter warm dark matter  

Lovell, Eke, Frenk, Gao, Jenkins, Wang, White, Theuns, 
Boyarski & Ruchayskiy  ‘12 
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Most of these subhalos never manage 
to make a visible galaxy  

CDM simulations produce >105 subhalos 
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Dark halos 
(const M/L) 

galaxies 

SN feedback+photoionization 

AGN feedback 

Making a galaxy in a small halo is hard because: 

•  Early reionization heats gas above Tvir  

•  Supernovae feedback expels gas  
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Luminosity Function of Local 
Group Satellites 

LG data 

Benson, Frenk, Lacey, Baugh & Cole ’02 

Koposov et al ’08 
SDSS 

•  Median model  correct 
abund. of sats brighter than  
MV=-9 and Vcir > 12 km/s 

•  Model predicts many, as yet 
undiscovered, faint  satellites 

•  LMC/SMC should be rare 
(~2% of cases) 
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• cold dark matter • warm dark matter  

Lovell, Eke, Frenk, Gao, Jenkins, Wang, White, Theuns, 
Boyarski & Ruchayskiy  ‘12 

• Counting satellites cannot distinguish CDM from WDM! 

Need to look in more detail at the structure of small halos  
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€ 

Vmax =maxVc

€ 

Vc =
GM
r

Note: none of the best-fit halos 
for the dwarf spheroidals has 

Vmax > 25 km/s 

The Aquarius subhalos 
and  the satellites of 

the Milky Way  

rmax 

Vmax 

Top 2 best fit CDM models to data 

Strigari, Frenk & White 2010 

Aquarius halos have ~10 subhalos 
with Vmax> 30 km/s; the MW has 

only 3: LMC, SMC, Sagittarius 

30 km/s 

Vmax/V50 
N

(>
V

m
ax

/V
50
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Rotation curves  of 12 
subhalos with most 
massive progenitors 

Red  3 halos with 
most massive 

progenitors (LMC, 
SMC, Sagittarius?) 

Is CDM compatible w. 
luminosity & structure 
of observed satellites?  

Vmax 

rmax 

CDM 
Aquarius 

simulations 

Vcirc within r1/2 for 
MW satellites 

Lovell, Eke, Frenk, Gao et al ’11; 
see also Boylan-Kolchin et al ’11a,b 

€ 

Vc =
GM
r

€ 

Vmax =maxVc



Rotation curves of Aquarius subhalos  
Boylan-Kolchin et al. ‘11 
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The Aquarius halos have ~10 subhalos with too 
large a Vmax (i.e. much too concentrated) to be 

compatible with observed kinematics of MW dwarfs   

• Aquarius • Fornax 
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• cold dark matter • warm dark matter  

Lovell, Eke, Frenk, Gao, Jenkins,  Wang, White, Theuns, 
Boyarski & Ruchayskiy  ‘11 

? 



Lovell, Eke, Frenk, Gao, 
Jenkins,  Wang, White, Theuns, 

Boyarski & Ruchayskiy  ‘11 
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Warm vs cold dark matter subhalos 

“Formation redshift”  
z at which Mhalo  first 

exceeded Minfall(<1kpc)  

WDM halos form later 
& have lower central 

masses than their 
CDM counterparts! 

WDM subhalos are still 
cuspy but are less 

concentrated than CDM 
subhalos  

 

Lovell, Eke, Frenk, Gao, Jenkins et al ‘11 
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Is this the end of CDM? 

1.  Baryon effects  

2.  The mass of the MW 
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Rapid ejection of large 
fraction of gas during 
starburst can lead to a 
core in the halo dark 
matter density profile  

Baryon effects in the MW satellites  

Let baryons cool and 
condense to the 
galactic centre 

Navarro, Eke, Frenk ‘96 
Ponzen & Governato ‘12 
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Number of massive subhalos  

Number of massive 
subhalos increases 

rapidly with halo mass  

nu
m

be
r o

f s
ub
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lo

s 
(>

V
th
) 

Parent halo mass (M200/Mo) 

Aquarius 
Aquarius halos have 

M~2x1012 Mo 

But: is this the mass of 
the MW halo? 
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Probability of massive subhalos  

Probability of having no 
more than 3 subhalos with 

Vmax> 30 km/s 

Wang, Frenk, Navarro, Gao ‘12 

Depends strongly on 
M200  (and Vcut) 

If mass of MW >2x1012Mo, 
CDM is ruled out! 

If mass of MW ~1x1012Mo, 
CDM is OK 
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ΛCDM: problems/possible solutions 

Possible solutions: •  Warm dark matter 

•  Baryon effects that make large CDM subhalos less concentrated 

•  Sat. pop. in the MW is very atypical or  Mhalo ≤ 1012Mo 

•  ΛCDM great success on scales > 1Mpc: CMB, LSS, gal evolution   

•  CDM models place brightest sats in most massive subhalos and 
these appear to be too concentrated to be compatible w. kinematics   

A problem on subgalactic scales?  
Two NO-problems: 
1.  The satellite LF  can be explained by galaxy formation 
2.  Central cores  data consistent with cusps  

However:  
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Cold dark matter ? 

UK DM search 
(Boulby mine) 

If mass of MW halo >2x1012Mo  

Evidence for SUSY 

Annihilation radiation  

Direct detection  

Unless baryonic effects are important  
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Warm dark matter ? 
Sterile neutrino detection possible  

Decay line in X-rays 

Constellation X 

Tritium β  - decay 


