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Challenges

(1) Prepare this talk.

(2) Does cold dark matter exist?
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Evidence for cold dark matter

Cosmic crowave Background Galaxy Clusters
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“For any comp
phenomenon t
elegant, compe
explanation.”

ex physical
nere is a simple,

ling, wrong

Thomas Gold, 1920-2004,
Austrian-born astronomer
at Cambridge University
and Cornell University
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Modified gravity

Is it excluded?

e MOND (F=ma?/ao for a<universal ao) is only non-relativistic and
so cannot be tested on cosmological scales

* TeVeS, MOND’s generalization, contains new fields that could be
interpreted as cold dark matter interacting only gravitationally. It

does not reproduce the pattern of CMB peaks.

* There are other ideas, like conformal gravity, but are less studied
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Cold dark matter, not modified gravity

The Bullet Cluster Symmetry argume.:nt: baryons are at
center, but potential has two wells.
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Cold dark matter, not modified gravity

The Bullet Cluster
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Symmetry argument: baryons are at
center, but potential has two wells.




Cold dark matter, not modified gravity

The Bullet Cluster Symmetry argume.:nt: baryons are at
center, but potential has two wells.
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Challenges

(1) Prepare this talk.
(2) Does cold dark matter exist?

(3) What is the nature of cold dark matter?
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Evidence for non-baryonic dark matter
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No known particle can be cold dark matter
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No known particle can be cold dark matter
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Is cold dark matter a new elementary particle?
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Is cold dark matter a new elementary particle?

IS HINCHLIFFE’S RULE TRUE? -

Boris Peon

Abstract

Hinchliffe has asserted that whenever the title of a paper
is a question with a yes/no answer, the answer is always no.
This paper demonstrates that Hinchliffe’s assertion is false,

but only if it 1s true.
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Is cold dark matter a new elementary particle?

The simplest and most elegant idea

The Magnificent WIMP
(Weakly Interacting Massive Particle)

® One naturally obtains the right cosmic density of WIMPs

® One can experimentally test the WIMP hypothesis

The same physical processes that produce
the right density of WIMPs make their detection possible
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The original WIMP

PHYSICAL REVIEW
LETTERS

VYOLUME 39 25 JULY 1977 NUMBER 4

Cosmological Lower Bound on Heavy-Neutrino Masses
Benjamin W, Lee®
Fermi National Accelevator Laboratory,(b) Batavia, Illinois 60510
and

Steven Weinberg(®
Stanfovd University, Physics Department, Stanford, California 94305
(Received 13 May 1977)

The present cosmic mass density of possible stable neutral heavy leptons is calculated
in a standard cosmological model. In order for this density not to exceed the upper lim-
it of 2x 10~2% g/em?, the lepton mass would have to be greater than a lower bound of the

order of 2 GeV,
2 GeV/c2 for Q=1
Now 4 GeV/c? for Q.=0.25
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The original WIMP

* Lee and Weinberg’s heavy neutrinos were Dirac neutrinos
WIMP # antiWIMP
In this case, an asymmetry is possible in their density

NWIMP F NantiWIMP (asymmetric dark matter)

Lee and Weinberg set it to zero

* Many other dark matter candidates (Majorana neutrinos,
neutralinos, gauge singlet scalars) are self-conjugate

WIMP = antiWIMP

In this case, no asymmetry is possible
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Cosmic density of thermal WIMPs

e At early times,WIMPs are produced in e*e, u*p-, etc collisions in
the hot primordial soup [thermal production].

et +e Tyt uT ete o x X
X f

) a
X

f

* WIMP production ceases when the production rate becomes
smaller than the Hubble expansion rate [freeze-out].

o After freeze-out, the number of WIMPs per photon is constant.
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Cosmic density of thermal WIMPs

freeze-out
[ann = n{ov) ~ H

annihilation rate ~ expansion rate
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This is why they are called Weakly Interacting Massive Particles
(WIMPless candidates are WIMPs!)
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Cosmic density of massive neutrinos

Fourth-generation Standard Model neutrino
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Cosmic density of massive neutrinos

Fourth-generation Standard Model neutrino
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Cosmic density of massive neutrinos

Fourth-generation Standard Model neutrino
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Cosmic density of massive neutrinos

Fourth-generation Standard Model neutrino
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Cosmic density of massive neutrinos

Fourth-generation Standard Model neutrin
~ few GeV
preferred cosmological mass

Lee & Weinberg 1977
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Connection to colliders

Annihilation v — f f Production f f — vi
% f f vV
>’MA4< Inverse reaction >\[v<
% z f f Z %

For example, a ~4 GeV/c? dark matter neutrino would be
copiously produced in resonant Z boson decays
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Connection to direct detection

Annihilation v — qq Scattering vq — Vg
v %
v q
>/mm< . Crossing | Z
% Z q
q q

For example, for a ~4 GeVIc? dark matter neutrino, the scattering cross section is

(o)

o, ~ 0.01 ~ 10738 cm?

C
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Spin-independent (June 2012)

CRESST 1o
CRESST 20
CRESST 2009
- EDELWEISS-II
CDMS-II
XENON100
DAMA chan.
DAMA
CoGeNT

10™

WIMP Vv
model-dependent mass [GeV]

Ipb = 10-36 cm?2 Updated from Anglehor et al 201 |
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Ahlen et al
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Cosmic density of massive neutrinos

Fourth-generation Standard Model neutrin

~ few GeV
preferred cosmological mass

Excluded as dark matter (1991) EECAEULE SV

Direct
Searches
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Cosmic density of massive neutrinos

Fourth-generation Standard Model neutrir
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Challenges

(1) Prepare this talk.
(2) Does cold dark matter exist?
(3) What is the nature of cold dark matter?

(4) The failure of the simple and elegant WIMP neutrino.
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Is cold dark matter a new elementary particle?

|deas from theoretical particle physics:

® From Quantum Chromodynamics:
- Axions

® From Grand Unified Theories & String Theories:
= Lightest Supersymmetric Particle

® From String Theories & Extra-dimensions:
= Kaluza-Klein Particle

® FEtc.,etc., etc.
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Supersymmetric dark matter

* Neutralinos
the most fashionable/studied

* SuperWIMPs
they solve the Lithium problem in primordial nucleosynthesis

* Sneutrinos
they may account for the DAMA modulation

* Gravitinos
they may solve the “satellite problem” but are undetectable

* Particles in the hidden sector
they might have the right properties for Cold Dark Matter

* NMSSM (Next-to-Minimal Susy Standard Model)
more parameters, more possibilities
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Annihilation
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Indirect detection
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Indirect detection

Decaying dark matter

* Acceptable explanation for positron excess

* Upper bounds on lifetime from neutrino and
gamma-ray fluxes (diffuse and from clusters),
from the CMB, Lyman-q, and large scale
structure

Predicted |.42 GHz

microwave halo from
decaying dark matter

Zhang, Redondo, Sigl 2009
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Indirect detection

Non-thermal dark matter

* Produced by the decay of heavier particles or
topological defects or in other ways (see axions)

Model connecting positron
excess to neutrino masses,
cosmic strings and leptogenesis.

Bi et al 2009
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Axions
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Axions as solution to the strong CP problem

The strong CP problem

In QCD, the neutron electric dipole moment d, should be ~10-'¢ ecm,
but experimentally d,, < 1.1 x 1072 ecm

The Peccei-Quinn solution

Introduce a new U(l)pq symmetry and a new field to break it
spontaneously. The remaining pseudoscalar Goldstone boson is
the axion. It acquires mass through QCD instanton effects.
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Axions as dark matter

Hot

Produced thermally in early universe
Important for ma>0.1eV (f2<10°), mostly excluded by astrophysics

Cold

Produced by coherent field oscillations around mimimum of V(6)
(Vacuum realignment)
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Axion cold dark matter parameter space

fa Peccei-Quinn symmetry breaking scale
N Peccei-Quinn color anomaly
Ns Number of degenerate QCD vacua

Kim-Shifman-Vainshtain-Zakharov
Dine-Fischler-Srednicki-Zhitnistki

H1 Expansion rate at end of inflation

Couplings to quarks, leptons, and photons

0; Initial misalignment angle

Harari-Sikivie-Hagmann-Chang

Davis-Battye-Shellard Axionic string parameters

Assume N = Ni =1 and show results for KSVZ and HSHC string network

Thus 3 free parameters f., 0;, H1 and one constraint Q,=Ccpm
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Axions as cold dark matter
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Visinelli, Gondolo 2009
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Axions as cold dark matter

Visinelli, Gondolo 2009
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Indirect detection

Modified cosmology

* The universe history before Big Bang Nucleosynthesis
is unknown. A faster or slower expansion changes
the relation between annihilation and scattering.

0.0001

With epoch dominated by
decaying scalar field, low
mass WIMPs are possible
(but not DAMA/CoGeNT).

standard o

e vvvvw ol Gelmini, Gondolo, Yaguna,
dino 31(5)3 . 1000 10000

ey 6V Soldatenko 2007
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Indirect detection

Heavy WIMPs

* Annihilation into WW, ZZ, etc. unrelated to
scattering off quarks and gluons

Coannihilations

* Annihilation proceeds through intermediate
production of fast-annihilating particles

Resonant annihilation

* Annihilation proceeds through resonances
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Indirect detection

Heavy WIMPs

* Annihilation into WW, Z.
scattering off quarks and

Coannihilations

* Annihilation proceeds thi
production of fast-annihi’

Resonant annihilation
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Indirect detection

Heavy WIMPs

* Annihilation into WW, Z.
scattering off quarks and

Coannihilations

* Annihilation proceeds thi
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Evidence for cold dark matter particles?

Annual modulation
Drukler Freese, Spergel 1986

WMAP/Planck haze
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The situation

“There are known knowns. These
are things we know that we know.
There are known unknowns. That
it to say, there are things that we
know we don’t know. But there are
also unknown unknowns. There are

things we don’t know we don’t
know.’ Donald H. Rumsfeld,

b. 1 932, American
politician
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The probability of the (un)known

Statistical and systematic errors

John Venn Pierre Simon Laplace

“There are three kinds of lies: lies, damned lies, and statistics.”
Attributed to Benjamin Disraeli (1804-1881), British Prime Minister
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Challenges

(1) Prepare this talk.

(2) Does cold dark matter exist!?

(3) What is the nature of cold dark matter?

(4) The failure of the simple and elegant WIMP neutrino.

(5) At how many sigmas are experimental results worth of a
theoretician’s time! Mentally estimate

the probability of winning a Nobel prize. Q
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The bane

“Any competent theoretician can fit
any theory to any given set of facts.”

Roderick O. Redman,
1905-1975, Professor
of Astronomy at
Cambridge University
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® Explaining direct and indirect claims of detection often requires
complicated and contrived models.
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Evidence for cold dark matter particles?

Annual modulation
Drukler Freese, Spergel 1986
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Evidence for cold dark matter particles?

Annual modulation
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Light WIMPs
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Spin-independent (June 2012)
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CRESST 20
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CoGeNT
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WIMP Vv
model-dependent mass [GeV]

Ipb = 10-36 cm?2 Updated from Anglehor et al 201 |
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Spin-independent (June 2012)
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Limits from XENON-100, KIMS, CDMS, .....

Upper limit on WIMP-nucleon cross section
from XENON-100 (model dependent)
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Limits from XENON-100, KIMS, CDMS, .....

KIMS: Csl scintillation detector
(similar to DAMA)

e Excludes inelastic dark matter
* Excludes 60 GeV/c? DAMA region
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Limits from XENON-100, KIMS, CDMS, .....
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CDMS does not observe an
annual modulation and
constrains its amplitude

Ahmed et al 1203.1309

CDMS

/2 (~Apr.1)
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Recoil Energy [CoGeNT keVee]
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CoGeNT & DAMA vs. XENON, CDMS, et al
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The expected number of events

number of detector recoil
= (exposure) X ®
events response rate

detector| energy y Counting>
response B response function acceptance

recoil article
— (P , X (astrophysics)
rate physics
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The expected number of events

number of detector recoil
= (exposure) X ®
events response rate

detector| energy y Counting>
response N response function acceptance

recoil article
— (P , X (astrophysics)
rate physics
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Detector response model

From measured energy to recoil energy

Recoil energy (keV)

) = g(Eec, E)

Energy observed in detector, typically
expressed in keV electron equivalent (keVee)

energy
(response function

Typically written as a single Gaussian with mean value

Eee :QE

Quenching factor

and standard deviation 0g, but may be different.
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Detector response model Bozorgnia et al 2010

Channeling in Nal(TlI)
Quenching factor E.. :E

This is where
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The expected number of events

number of detector recoil
= (exposure) X ®
events response rate

detector| energy y Counting>
response N response function acceptance

recoil article
— (P , xf(astrophysics)
rate physics
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Astrophysics model

How much dark matter comes to Earth?

(astrophysics) = p /
V>VUmin (F)
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Astrophysics model

How much dark matter comes to Earth?

Local halo density / Velocity distribution

U, t
(astrophysics) = p / f(.1) d’v
'U>'Umin(E) v

Minimum speed to impart energy E, vpin(F) = (ME/pu+96)/vV2ME
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Astrophysics model

Rotation curve (Clemens 1985)
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Our galaxy is inside a halo of dark matter particles
| kpc =2.06x10"' AU Image by R. Powell using DSS data
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Astrophysics model

Rotation curve (Clemens 1985)
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Astrophysics model

Rotation curve (Clemens 1985)
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Astrophysics model: local density

Galactic density profile from Aquarius simulations
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Diemand’s comments on ‘“Via Lactea’’:

our approach:

collisionless (pure N-body, DM only) simulations

etreat all of Omega_m like dark matter
e bad approximation near and in large galaxies
OK for dwarf galaxies and smaller scales
esimple physics: just gravity, good #CPU scaling == allows high resolution
e no free parameters (ICs known thanks to CMB + ...)

= accurate solution of the idealized problem

complementary approach:

hydrodynamical simulations

e computationally expensive, resolution relatively low

e SPH and grid disagree even in simple tests,Agertz et al 2007

e processes far below the resolved scales (star formation,SN, ... ?)
implemented through uncertain functions and free parameters

Courtesy ). Diemand

=P approximate solution of the more realistic problem
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Astrophysics model: local density

GeV

— —3
po = (0.430 £0.113(,) *+ 0.096(,@)) [ 7 (o) = 0-385:£0.027 GeV em

cm?

Ullio, Catena 2009
Salucci et al 2010

300

Local density from |G
galactic modeling

locco, Pato, Bertone, Jetzer 2010

K .5 K N R . 2 .3 K 1 K
Po[GeV/em 3] Po [GeV/em 3]
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Astrophysics model: local density

GeV — 0.3854-0.02 -3
po = (0.430 £0.113, + 0.096<,~@D>)—e ' P o) = 0-385E0.027 GeV e
cim

Ullio, Catena 2009 -

Salucci et al 2010

The most direct method, requiring only local
Py measurements of the disk contribution and the
gal slope of rotation curve at the Sun’s distance.
Now even more precise with preliminary VERA:

Honma at NDM | 2
GeV
po = (0.463 +0.044(, ) +0.096(, )

cm?

Expect even better at VERA completion and
with GA

\ ‘
0.2 03 pﬂ“[‘GCV(;Zm,z]M 0.7 08 0.1 02 03 po.4 C\,O.st 0.6 0.7 08 IOCCO’ Pato, Bertone’ Jetzer 20 I 0
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Astrophysics model: velocity distribution

The local density may be “known” within a factor of 2,
but the velocity distribution is still very very uncertain

Analytic models

i\ dark halo+disk (1:1 Maxwellian) 0

RS

= Read et al 2008
~ = Kuhlen et al
) E ' . 4
= ‘% |Wialacteall .
X "\;‘;Slowly-rotating o~ 1,094,107,757 particles o B R
B % Tsallis o A .
=2 o

<

Z

200 300 400 500 600
w [km/s]

Diemand, Kuhlen, Madau, Zemp, Moore, Potter, & Stade
(Nature, 454, 735, Aug. 7"" 2008) ’ R

— 800 kpc

Thursday, June 21, 12



Astrophysics-independent approach

m, =10 GeV

Fox, Liu,Weiner 201 |

Astrophysics factor

2 o0 / '
Px 9 xpC€ / f(?j )dv’
My y

(V)

g(v) [day™"]

POp
n,

CoGeNT to DAMA with Q=0.3,m,="7 GeV 10~24

10~2°

—26
10 XENON100
XENON10-S2 ==========

CDMS Ge
_o7| CDMS Si SUF
10 CDMS Ge low *rrrerereees
SIMPLE
CRESST-II
CoGeNT
DAMA F——%—i

Q
Q
>
Q
=
~
o0
=4
~
>
<
o
~
9]
+~—
)
=
o
Q

10 12 14 107

200 400 600
E [kevee] Umin [klll S_l}

Fox, Kopp, Lisanti, Weiner 201 | Frandsen et al 201 |
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Astrophysics-independent approach

Still depends on
particle model

-t

cI
[\®)
wn

CoGeNT| high
CoGeNT, med.

CoGeNT,,
DAMA,,
CRESST
SIMPLE
CDMS

-

cI
N
(=)

‘_Ir‘—|
72}
>
S
.
Q.‘
s
~
N
Q
(Y
S
Q
o~

XENON100
CDMS mod. limit Analysis extends Fox, Liu,

m=9GeV/c* f,/f,=1 ] i
Weiner method to include

200 300 400 500 :
energy response function

Vmin [km/ S]

Gondolo Gelmini 1202.6359
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The expected number of events

number of detector recoil
= (exposure) X ®
events response rate

detector| energy y Counting>
response N response function acceptance

1 ticl
(reccn) _ <par 1C e) < (astrophysics)

rate physics
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Particle physics model

What force couples dark matter to nuclei?

particle\  og7(E) + osp(F)
physics 2mu?

d_a B 2u°v? do
dE  m dE

0(F) = Fmax
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Particle physics model

What force couples dark matter to nuclei?

Spin-independent and spin-dependent cross sections

particle\  og7(E) + osp(FE)
physics /] 2mu?

Reduced mass p = mM /(m + M)

do 2u°v? do

o(B) = Buax 15 = = 4B
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Particle physics model

Scalar and vector currents give spin-independent terms

osi(F) = %M‘pr%— (A—2Z)fn i ‘F(E)‘2

_ X X X X | |Nuclear density
Effec.tlve fOUf - >€ g >< form factor
barticle vertices "

P P n n
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Particle physics model

Scalar and vector currents give spin-independent terms

2
os1(E) = 2|2, + (A~ 2)1,

_ X X X X | |Nuclear density
Effec.tlve fOUf - >€ g >< form factor
barticle vertices "

P P n n

Example: neutralino

_ Jhxx9h 9LGxq9Rg
2y 2 = 3 qu) |- Y Paan 37 analin
q h h g q

2 ‘F(E)(2

Main uncertainty is (msS§s) (strange content of nucleon)
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Particle physics model

Nuclear spin structure functions

(0) - / i (1) €97 dr

Jsp(r) = [G8p + Géps(i)] a(i) 6(r — 1)

=1 1.2

0.8;
0.65
0.4]

0.2

Divari, Kosmas, Vergados, 00
Skouras 2000

Main uncertainty is nuclear spin structure functions S(q)
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A few particle models for light WIMPs*

Models References
MSSM neutralino Goldberg 1983; Griest 1988; Gelmini, Gondolo, Roulet | 989; Griest,
Roszkowski 199 1; Bottino et al 2002-1 | ; Kuflik-Pierce; Zurek-201-0;
S Feldman-et-al 2010; Cumberbatch-et-al 201, Belli et al 201 I; .....
LSJ beyond-MSSM neutralino Flores, Olive, Thomas |990; Gunion, Hooper, McElrath 2005; Belikoyv,
v Gunion, Hooper, Tait 201 |; Belanger, Kraml, Lessa 1105.4878;......
sneutrino @ ... ;An, Dev, Cai, Mohapatra | | 10.1366; Cerdeno, Huh, Peiro, Seto
1108.0978;.....
minimalist dark matter Silveira, Zee 1985; Veltman,Ydnurain 1989; McDonald | 994; Burgess,

(real singlet scalar with Zz) Pospelov, ter Veldhuis 2000; Davoudiasl, Kitano, Li, Murayama 2004;
Andreas et al 2008-10; He, Tandean 1 109.1267; .....

technicolor and alike ....; Lewis, Pica, Sannino 1 109.3513;.....

kinetically-mixed U(1)" [ ; Foot 2003-10; Kaplan et al 1105.2073;An, Gao 1108.3943;

(Higgs portal) Fornengo, Panci, Regis | 108.466 |;Andreas, Goodsell, Ringwald
[109.2869;Andreas | 110.2636; Feldman, Perez, Nath
1109.2901;......

baryonic U(1)’ Gondolo, Ko, Omura ; Cline, Frey 1109.4639;.......

* 1-10 GeV WIMP; very incomplete references.
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Break the annihilation/scattering relation

Annihilation v — qq Scattering vq — vq
14 1%
v q
>’m,< ) Crossing X A
% Z q
q q

For example, for a ~4 GeVIc? dark matter neutrino, the scattering cross section is

o,n >~ 0.01 ) ~ 107°% cm?
C
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% Z q
q q
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Break the annihilation/scattering relation

Annihilation v — qq Scattering vq — vq
14 1%
v q
>m< ) Crossing X 7
5 Z

WIMP mass (GeV/c?) Akerib et al ( CDMS) 2010
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Break the annihilation/scattering relation

Annihilation v — qq Scattering vq — vq
14 1%
v q
>m< ) Crossing X 7
5 Z

WIMP mass (GeV/c?) Akerib et al ( CDMS) 2010
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Break the annihilation/scattering relation

Annihilation v — qq Scattering vq — vq
14 1%
()
) Crossing X A
q q

Resonant when m, = mz/2

~
Oyn =

0.02 (1 - 4m,%>2 (ov)

14+ my/my c

ovn would perhaps match DAMA/CoGeNT if mz were = 2m,

Iry a new patrticle y and a new vector boson Z’
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Break the annihilation/scattering relation

Y decay width

(a) CDM fermion | |

my [GeV/c?]

Y decay width

(b) CDM scalar |

mzp=12GeV/c® -

Thursday, June 21, 12

my [GeV/c?]

Example: Leptophobic Z’

* An extra U(l) gauge boson Z’
coupled to quarks but no
leptons, with no significant
kinetic mixing

e Works for mz~10-20 GeV and
«’'~107

Gondolo, Ko, Omura 201 |

DAMA/CoGeNT

CDM fermion
CDM scalar




Challenges and uncertainties

® Does cold dark matter exist?
® What is the nature of cold dark matter?
® The failure of the simple and elegant WIMP neutrino

® The numerous claims of detection in gamma-rays,
cosmic-rays, microwaves, radio

® The universe before Big Bang nucleosynthesis
® The phase space density of dark matter near the Sun

® The apparently conflicting detections of light WIMPs
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IAH, HZ= 0 ANENE, fFw,

ERCE

It is a noble insight to realize that knowledge is ignorance,

It is mental sickness to regard ignorance as knowledge.
The Tao
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