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Q0 CAMECA Collaborators on Pending Programs

Project LaPlace Project Tomo
m Dierk Raabe, Baptiste Gault, m Rafal Dunin-Borkowski
m Gerhard Dehm, Christina Scheu m  Forschungzentrum Jilich
m  Max Planck Institute Dusseldorf m Joachim Mayer
m  RWTH Aachen
m Integration of LEAP and STEM m  Forschungzentrum Julich

m Dierk Raabe
m  Max Planck Institute Diisseldorf

m  Max Haider
m CEOQOS

m Integration of LEAP and TEM
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€ CAMECA

ATOM Project

m  Simon P. Ringer
= University of Sydney
m  Michael K. Miller
m  Oak Ridge National Laboratory
m Krishna Rajan
= lowa State University
m  Ondrej Krivanek, Niklas Dellby
= Nion Instruments

LEAP-STEM Imaging
m Brian Gorman, David Dierks
m Colorado School of Mines

m Christoph Koch,
Wouter van den Broek
= Humboldt Universitéat - Berlin

In Pursuit of Atomic-Scale Tomography

Other Active Collaborators

CAMECA
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David J. Larson
Ty J. Prosa
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Joseph H. Bunton
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@l CAMECA Structure-Properties Microscopy

Atomic-Scale Tomography gives
Structure which can be connected to

Properties through
Computational Materials Science

Characterization

Properties

Processing
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WAMECA Analytical Tomography = LEAP + STEM

m STEM tomography
m Needle-shaped specimens
m 360° rotation of needle
m Full STEM image and analysis modes

m EELS adds chemical sensitivity
Diffraction enhances structure certainty
+
Atom probe tomography provides 3D atom positions
Cryo specimen stage (20K)
1 ppm analytical sensitivity
0.2 nm spatial resolution in 3D

= Atomic-Scale Tomography?
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2 CAMECA

Atomic-Scale Tomography

m Definition
1. Atoms positioned with high precision

2. 100% of atoms detected
= Isotopic identity valuable at times

3. Atoms identified with high precision

4. Discrete 3-D image for a large volume
(500x500x500 nm3, i.e., billion atoms)

Kelly, Miller, Rajan and Ringer, Microscopy and Microanalysis (2013)
19(03), pp 652 — 664. DOI:
http://dx.doi.org/10.1017/S1431927613000494.
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8 CAMECA :
Why Atomic-Scale Tomography?

m Characterization of small objects (<100 atoms) requires
knowledge of every atom
m Single atoms affect performance of atomic-scale devices

m Atomic structure (crystallography, radial distribution function)
can be crucial for atomic-scale structures

m  Atomic materials design requires characterization-based
feedback

m Organic structures resolved better with 100% of atoms

m Maybe defect structures will be fully resolved
m Grain boundaries
m Dislocations
m Vacancy distributions
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B(CAMECA TEM and Atomic-Scale Tomography

doi:10.1038/nature10934

Electron tomography at 2.4-angstrom resolution

M. C. Scott™*, Chien-Chun Chen'*, Matthew Mecklenburg'*, Chun Zhu', Rui Xu', Peter Ercius?, Ulrich Dahmen?, B. C. Regan'

& Jianwei Miao' . - ot s
444 NATURE VOL 483 22 MARCH 2012

Figure 4 | Identification of four major grains inside the gold nanoparticle in
Figure 3 | 3D structure of the reconstructed gold nanoparticle. a, b, 3D three dimensions. Grains 1, 2 and grains 3, 4 are related by mirror-reflection
volume renderings of the nanoparticle and their Fourier transforms (insets) at across the horizontal interfaces marked by dotted lines. The angle enclosed by
the two-fold (a) and three-fold (b) symmetry orientations. ¢, d, Iso-surface close-packed planes across these interfaces was measured to be 69.9° = 0.8

renderings of the nanoparticle at the two-fold (c) and three—f’ol(i (d) symmet between grains 1 and 2,and 71.3" = 0.8 between grains 3 and 4, both of which
orientatiins Trisets shoP:N a'model icasahiodron at the sanie orientatio);ls v are consistent with the angle for a face-centred cubic twin boundary (70.53").
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********************** Electron Tomography & 3D Atom Positions

nature
matert tll S PUBLISHED ONLINE: 21 SEPTEMBER 2015 | DOI: 10.1038/NMAT4426

LETTERS

Three-dimensional coordinates of individual
atoms in materials revealed by
electron tomography
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Rui Xu', Chien-Chun Chen"%, Li Wu'f, M. C. Scott'!, W. Theis?', Colin Ophus*, Matthias Bartels’,
Yongsoo Yang', Hadi Ramezani-Dakhel®, Michael R. Sawaya®, Hendrik Heinz®, Laurence D. Marks’,
Peter Ercius® and Jianwei Miao™

o

= 3769 Tungsten atoms
= 9 atomic layers
= Strain increases toward surface
= May be presence of carbon
= Missing tungsten atom may be a
carbon atom
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GaN LED for Lighting

3D image ©
30 million atoms ©

60% of the atoms ©®

Spatial Resolution, or
« 0.1 Nnm<or<3nm

© ®

In

Ga



B CAMECA APT and Atomic-Scale Tomography

% \_ [s Lattice Rectified APT
G ys oA @M @Cu Lattice Rectification of
soee Q01 X e

3 Al-Zn-Cu-Mg alloy

M. P. Moody et al., Micros.
Microanal. 17, 226 (2011).

* 40% of atoms are assigned

Y by |_nference | :

P> Amcu * Limited to low-aberration 5
: 2 0.8 - ®Mg : g
23 {mCu*Mg regions £
i 04 - Limited to simple crystal -
0.0 — structures 2

00 04 08 12 16 3

Radial Offset (nm)
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B( CAMECA .
~ Toward Atomic-Scale Tomography (AST)

What is needed for

4. Discrete 3-D image for a large volume  B. need new detector
(500x500x500 nm3, i.e., billion atoms)

APT AST?
m Definition of AST To achieve AST with APT:
1. Atoms positioned with high precision A. need complementary
Distortions corrected information %
2. 100% of atoms detected B. need new detector
Isotopic identity valuable at times g
3. Atoms identified with high precision B. need new detector E

In Pursuit of Atomic-Scale Tomography May 19, 2016 15



40 K Tungsten

| , -~ Best Imaging
Needle : ' ol Voltage
Helium Gas . .

Phosphor 23 , Sy '

Screen L {5 L

.Q .;.. - ...
: e
' ... v " ’

Adsorbed gas atoms = field ion image
Specimen atoms = atom probe

Movie Courtesy Baptiste Gault



@l CAMECA Magnification of the Surface

Projection Microscope

Mag ~ d /R =1 million X
For spherical endcap on conic frustum

d = constant distance from sample to detector (100 mm)
R = sample radius (e.g., 100 nm)
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BCANECA Monophase Distortions

Close-packed planes

are faceted »\

Low aberration Faceting at low
regions index pole
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0l CAMECA Polyphase Distortions

"

In Pursuit of Atomic-Scale Tomography May 19, 2016 19

Second phase with high
evaporation field
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MCAMECA Second Phases Cause Non-Spherical Endforms

1) Apex Shape (Projection Law) changes during run
e 2) We must know the apex shape during entire run

High-field
phase

O. Dimond, Part Il Thesis (University of Oxford) (1999)

.---A

10nm
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D. J. Larson et al., Ultramicroscopy 111 (2011) 506
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Al CAMECA Determination of lon Trajectories

s Microscopy (Specimen Apex Shape)

m Electron microscopy

= TEM/STEM -

= SEM

m Scanning probe microscopy
m Field ion microscopy

m Simulation

= Can simulation of field evaporation be good enough?
= lIteration with actual data
s Today’s algorithms are not sufficient
= Need 100X increase in computing power or algorithm speed
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B( CAMECA STEM vs. SEM Comparison

30 kV BF 2kV SEM
STEM

b4

3000 kv 25 pA | STEM III BF 4.7 mm 363 nm
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B CAMECA I '
Outstanding Question

m \What image resolution is sufficient? <1l nm

m It will depend on reconstruction and data processing
algorithms

m Improved reconstruction will put atoms closer to correct
position
m Lattice Rectification may be able to finish the job

=  Knowledge of lattice (a priori or derived from data) constrains atom
positions

M. P. Moody et al., Micros. Microanal. 17, 226 (2011).
A. Breen, unpublished research (2014).
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WCAMECA  Tijp Shape from Surface Tangent Algorithm

T,=Tip Shape v

Petersen & Ringer, Journal of Applied Physics, 105, 103518 (2009)
Petersen & Ringer, Computer Physics Comms, 181, 676, (2010)

= STA point cloud showing
= Track the smooth movement of interest points = Tip Shape

n atilt series, | = Mean Curvature (color scale)
= Need 8 images to determine surface shape.
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B CAMECA Holography of Tip at High Applied Field

Towards quantitative electron holographic mapping of the electric field

around the tip of a sharp biased metallic needle

M. Beleggia,! T. Kasama,? D. J. Larson,? T. F. Kelly,? R. E. Dunin-Borkowski,* and G. Pozzi®
Y Center for Electron Nanoscopy, Technical University of Denmark, Kongens Lyngby,

Denmark

Y Center for Electron Nanoscopy, Technical University of Denmark, Kgs. Lyngby,

Denmark

NWCAMECA Instruments, Inc., Madison, WI, USA —

Y Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Griinberg Institute, E — O n
Forschungzentrum Jilich, Jilich, Germany ap

3 Department of Physics and Astronomy, University of Bologna, Belogna, Italy

(Dated: 18 February 2014) l
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8 CAMECA : I
Specimen Evolution Models

m Experimental specimen apex shapes
are expensive

m Simulated specimen apex shapes are
expensive

m Interpolation of the apex shape
between snapshots could solve this
challenge

m Recent work is promising:

(] D. Haley, M.P. Moody, G.D.W. Smith, Microsc.
Microanal., 19(06) (2013) 1709-1717.
doi: 10.1017/S1431927613013299

m D. Haley, T. Petersen, S.P. Ringer, G.D.W. Smith, J.

Microscopy 244 (2011): 170-80.
doi:10.1111/j.1365-2818.2011.03522.x.
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D. J. Larson et al., Ultramicroscopy 111 (2011) 506
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http://journals.cambridge.org/action/displayJournal?jid=MAM
http://dx.doi.org/10.1017/S1431927613013299

2( CAMECA

A
10 30 S0 10 0
1 1 | I 1

/
0 S0 30 0
1 1 I 1
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20
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40
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80

T
100

In Pursuit of Atomic-Scale Tomography

Interrupted Run

Si Pre-sharpened Microtip

Data were collected with field
evaporation for 5 minutes, then
field off for 5 minutes

A new PSM was run in voltage
mode in the reflectron tool at
15% PF, 1% DR, 50K, and 200
kHz pulse rate. The tip was run
for 5 min, then the HV was
disabled for 5 min.

This cycle was repeated 20 times

May 19, 2016
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2 CAMECA The ATOM Project

m Combine Nion STEM with LEAP

m Prepared proposal to US DOE in 2011
m Kelly, Miller, Rajan, Ringer

m DOE budgets have not admitted to this level of
project
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@ CAMECA fp—— The ATOM Project
|y et.
STEM+LEAP 7 e i

EELS Aper.
BF/MAADF

QOCM )

HAADF/Beam Stop Gate Valve |

Build objective lens LS
assembly with atom e

probe inside P
Pumping 2
Position—Sensitive
Detector
oL 0
Sample Chamber

QLM |

1k x 1k CCD

il

I[ ‘l

Side-entry liquid He
sample stage

C3/C5 Corrector

O. Krivanek et al., Ultramicros. ois |

Pumping 1 [ ] VOA
CL1
Gate Valve —

@ To CFEG e ..

Intel Technology Roadmap Meeting v 25 May 2016 29
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8 CAMECA
SCIENCE & METROLOGY SOLUTIONS

Current Instrumentation Design

With Brian Gorman, DaV|d Dlerks Colorado School of Mines
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€ CAMECA

In Pursuit of Atomic-Scale Tomography

STEM+LEAP Experiment

With Brian Gorman, David Dierks, Colorado School of Mines

May 19, 2016

SCIENCE & METROLOGY SOLUTIONS



€ CAMECA

Colorado School of Mines Development System

Local Electrode Geometry Local Electrode Geometry
Light microscope SEM

In Pursuit of Atomic-Scale Tomography May 19, 2016

SCIENCE & METROLOGY SOLUTIONS



8 CAMECA '
The German Projects

m Project ULTRA (uitimate Tomographic Reconstruction of Atoms)

m This has split for now into two separate programs:
= Project Tomo (LEAP-TEM) part of Project Ruska Center 2.0

— Forschungszentrum Julich and Helmholtz Society/German
Government

— Proposal submitted in January 2016

= Project LaPlace (LEAP-STEM)
— Max Planck Dusseldorf and Max Planck Society
— Two stage project:

» Stage | - Cryo-FIB-STEM-LEAP with cryo-UHV
suitcase transport and Reaction Chamber

» Stage Il — Build dedicated LEAP-STEM according to
the concepts presented here

Overview of Project LaPlace April 2016 33
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CCCCCCCCCCCCCCCCCCCCCCCCC TEMEl EAP Project Tomo

Build objective lens
assembly with atom probe
inside
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8( CAMECA '
Summary of Imaging

m Record tomographic “snapshot” of specimen apex at
regular intervals

m Use Specimen Evolution Models to interpolate surface
between snapshots

m Result:
Specimen apex shape during entire analysis

m Goal:
Correct all atom positioning to <0.2 nm
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B(CAMECA

SCIENCE & METROLOGY SOLUTIONS

Superconducting Detector
Development Project

With Robert McDermott and Joseph Suttle,
University of Wisconsin

AMETEK

MATERIALS ANALYSIS DIVISION
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B( CAMECA Atom Probe Microscope

Local
Electrode

Specimen

Voltage
Pulse HV

Contact Laser aging Detector
Pulse

In Pursuit of Atomic-Scale Tomography May 19, 2016
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BCAMECA MCP Construction and Performance

Conventional Pb-glass MCP m lons hitting in channel mostly get
amplified

m lons hitting on flat face mostly do not
get amplified
Sub 100 ps timing resolution possible
High gain
“No” variation in detection efficiency
with atomic number
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€ CAMECA

Needed
Needed

Needed

Why 100% Detection Efficiency?

Improves sensitivity

for single atom sensitivity
for small cluster analysis
for improved crystallography

m Needed if defect analysis is to be realized
m Needed for organic molecule identity
m Needed for atomic-scale tomography

In Pursuit of Atomic-Scale Tomography

May 19, 2016
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B CAMECA '
St Superconducting Detectors

Superconducting detector technology could enable m The fundamental properties of
100% detection efficiency metallic superconductors are
attractive and can do the job
SEEING v XEEGGGZE  m o Superconductor band gap ~5meV
IKey = Large signal is generated

~ l C "‘_j r‘ (‘ r l rl‘ r r o commercial cameras are far from ideal for many tasks, because they can detect only - 5 keV ion generates 106 electrons
_) Y D J J 29 J = those photons whose frequencies lie in the narrow visible range. Furthermore, their
- -7

color ¢ u\aluhnm do not involve a measurement of each photon’s precise frequency.

e s , m  External amplifiers not needed
tras, peee into the electromagnetic mlm henmd across the dlectromagnetic spectrum, from radio

ng devices made Of that of visible light—into the low-freqy (long- 2 . - rays. Improved.
superconducting material that act as e e bl ks i e i . .
2 andgammarays. Y they tooare imitedin theirabil-  verse by measuring the partern that gravity waves h b d t t
i I cular, for visible and los vavelengths 8 c -
SUPEIR STt o pciols Al otli rperdtles e e u ['he basic detection process
are revolutionizing a wide range of research Yl phéion i e s ]

and technologyfields i gl m takes ~ 30 ps
m The materials are well known,
stable, and easy to deposit

candoa A
ductivity (murecnpnble of such fine measurements  clear materials to stop them from being stolen or
and - ternational borders.

sensorsbased
photon and

captsz00sscewrrc ugglllh, e § COPHRIGHT 2088 SCENTIF AMEREAK, W
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Kent D. Irwin, “Seeing with Superconductors,” Scientific American, Nov. 2006, pp. 86-94.
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SEIESA Superconducting Detector Concepts

Double Meander Microwave Stripline Detector

m The crossed delay line detector

(XDL) has 2 or 3 electrodes

m The third line is used to resolve
multiple hits on a single
evaporation pulse.

m Pulses from single hits are robust

m Timing resolution < 1ns expected

m 2D detectors currently being
fabricated
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B CAMECA Theory of Operation

New superconducting detector approach (McDermott and Suttle)

m Transmission lines can be expanded in size without loss of
data collection rate

m By expanding to a single, continuous transmission line, we
gain access to position information

® g et
Read Out ea u%

Ch1 Ch2

(%))
zZ
o
'_
=)
|
(@]
n
>
Q
(@]
|
(@]
@
'_
LLl
=
o3
Ll
O
zZ
u
O
n

Intel Technology Roadmap Meeting 25 May 2016 42



W CAMECA Lithographically Patterned Nb Meander
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8 CAMECA ' '
>Fe Source for Energetic Particles

05272015Top 4 Raw Pulse Output
400 T

= Data from 1D i
transmission line fl

200 | ;‘|:

m Excellent pulse shape .« e \)44
m 300 mv amplitude “\hn"w‘qu W\ \J}

m No need for external | |
amplification | \l)

(mV)

Voltage

-300 -

m >]1 nsrise

1 1 1 1
-100 -50 0 50 100
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8 CAMECA
2D Detector

m Patterned detectors
fabricated

m Test fixture for ions is
being completed

m Testing will begin In
next few months
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2( CAMECA In the History of Microscopy,

We are at an Inflection Point

Telescopes

Human ey neye

Microscopes
/ Inflection point
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0l CAMECA The History of Microscopy

m The history of microscopy is the pursuit of learning
“more and more about less and less”

m We have reached the atomic scale
m This marks an inflection point

m The future of microscopy will be the pursuit of
learning “more and more about more and more”
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